Actionable Fusions Detected by RNAseq Co-occur with PD-L1 Expression and Driver Mutations in Solid Tumors Patients

Miyoung Shin, Paris Petersen, Steven Lau-Rivera, Segun Jung, Sally Agersborg, Jaclyn Hechtman, Fernando Lopez-Diaz*, Vincent Funari.

Neogenomics Laboratories. Carlsbad, CA fernando.lopezdiaz@neogenomics.com

Background

Incorporating gene fusions into a comprehensive profile is critical not only because very effective therapies targeting oncogenic fusion proteins exist but they may also negate the response to therapy of an actionable SNV and InDel mutations. We examined the cooccurrence of actionable gene fusions detected by RNA-seq with actionable SNVs/InDels and with the immunotherapy response biomarker, PD-L1.

Methods

In 2021, 5341 FFPE samples were analyzed by our clinical laboratory using a novel, clinical grade hybridization-based RNA sequencing assay that detects the expressed chimeric transcripts resulting from gene fusions (Figs. 1, 2) with 95.9% sensitivity and 100% specificity. DNA mutations (SNV/Indels) were detected with a clinical grade NGS assay and PD-L1 protein expression was determined by IHC using an appropriate LDT or FDA approved assays (SP42 or 22C3 antibodies). De-identified data were analyzed following an approved IRB protocol.

Results

Of the 5341 patients tested for gene fusions only 0.7% were profiled with a comprehensive fusion detection panel for 250 clinically relevant fusion genes. Conversely, 67% of all patients were tested only for NTRK gene fusions. The prevalence of the following most relevant fusions was: ALK=2.31% (in particular EML4-ALK), NTRKs=0.85%, RET=0.92% and ROS1=0.80% all mostly detected in lung cancers and FGFR2=5.60% in cholangiocarcinoma and PAX-FOXO in rhabdomyosarcomas. Among NTRK fusions, NTRK3 was detected in 52.9% of the positive cases; in particular, dominant fusions are ETV6-NTRK3 (26%) and EML4-NTRK3 (20%). In the 163 fusion positive cases, 37 cases had available DNA mutation testing and PD-L1 expression testing. These patients presented 24 different actionable fusions, including ALK (2), FGFR1/2 (5), NTRK 1/2/3 (10), NRG1 (3), RET (3) and ROS1 (3) fusions. Interestingly, while 73% (27/37) of those tumors were PD-L1 positive, similar to the 75% found on the fusion negative samples, PD-L1 was positive in 88% (15/17) of the lung samples with pathogenic mutations from this subset. This was strikingly higher than the 45% (192/424) found in the fusion negative cohort. Finally, excluding TP53 mutations, NTRK fusions frequently co-occurred with RNF43, FBXW7, TERT promoter, and ARID1A pathogenic mutations. FGFR fusions co-occurred with BAP1, PBRM1 or KRAS mutations, which correlates with the fact that both FGFR2 fusions and swi/snf alterations are enriched in intrahepatic cholangiocarcinoma, where the FGFR fusions were detected. RET fusions co-occurred with ARID1A and TERT. ROS1 fusions co-occurred with SMARCA4 and KRAS pathogenic mutations simultaneously. NRG1 fusions co-occurred with ARID1A and FBXW7 mutations. EML4-ALK fusions co-occurred with FGFR2 and KMT2D variants of unknown significance.

Conclusion

Actionable cancer driving gene fusions were detected by RNA-sequencing and co-occur with other biomarkers that can guide selection of therapies, such as immune checkpoint inhibitors (ICI) and olaparib. The data suggests that gene fusion testing is an important addition on the genomic profiling for therapy selection in solid tumors.

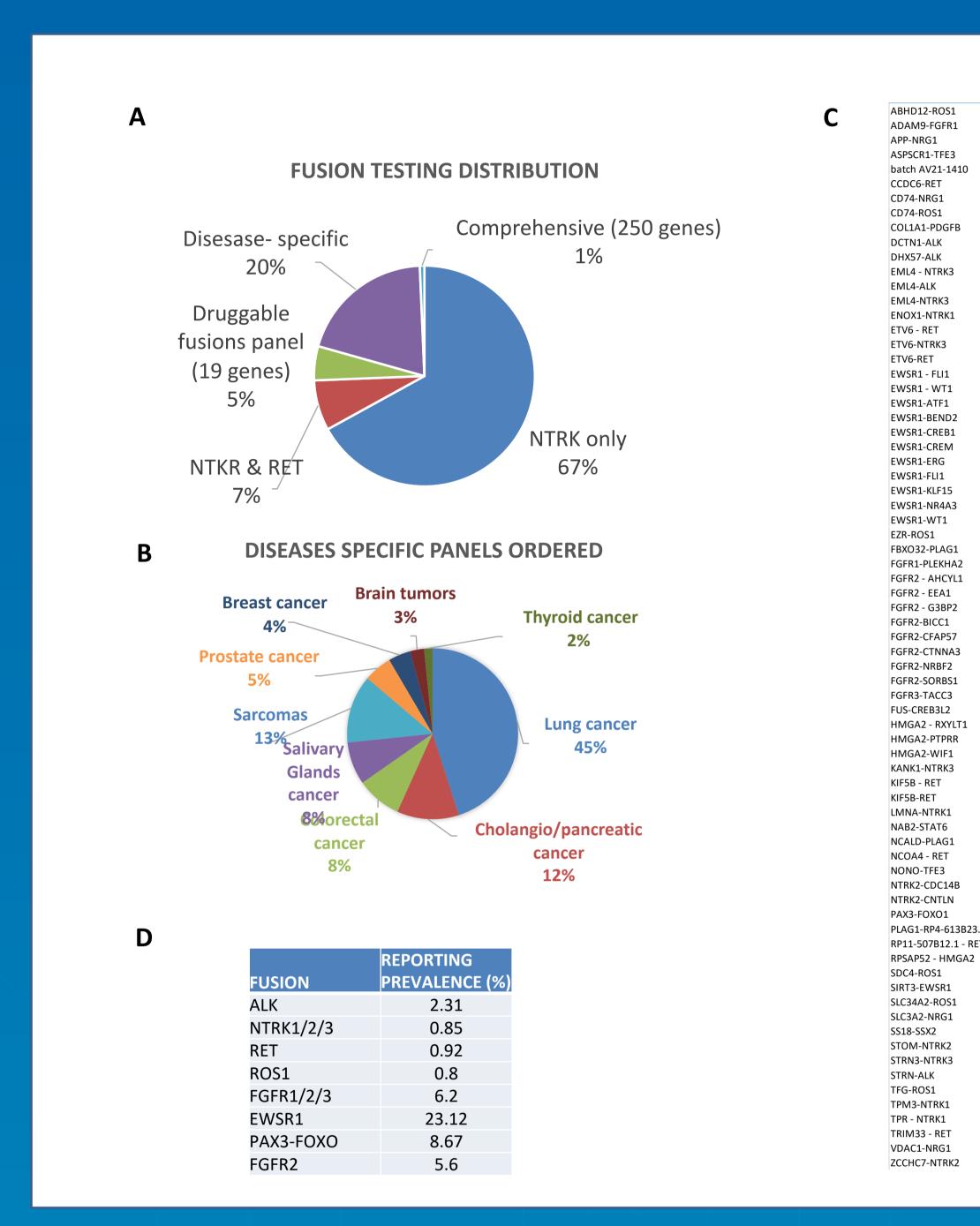
Highlights

- Therapeutically actionable fusions are co-detected with immunosuppressive phenotype
- Gene fusions and driving mutations might jointly drive tumors biology

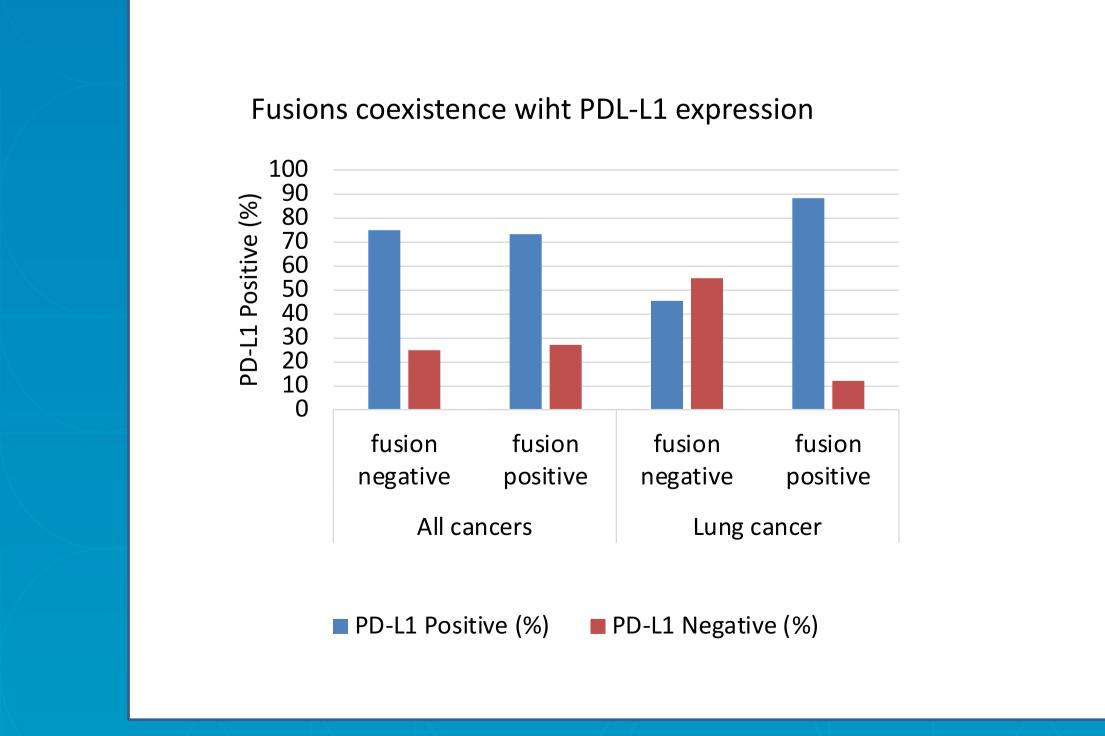
Solid Tumor Relevant Gene Fusions and Aberrant Transcripts

250 clinically relevant fusion genes									
ABL1	C11orf95	CREB1	ESRP1	HERPUD1	MAST2	NOTCH2	PML	SET	TFE3
ACSL3	CAMTA1	CREB3L1	ETV1	HEY1	MEAF6	NPM1	POU5F1	SLC34A2	TFG
АСТВ	CANT1	CREB3L2	ETV4	HIP1	MET	NR4A3	PPARG	SLC45A3	THADA
ACTL6A	CAPZA2	CREBBP	ETV5	HMGA2	MET e14 *	NRG1	PRCC	SND1	THRAP3
AFDN	CARS1	CRTC1	ETV6	HMGN2P46	MKRN1	NTRK1	PRKACA	SNURF	TMPRSS2
AFF1	CBFA2T3	CRTC3	EWSR1	HNRNPA2B1	MLLT1	NTRK2	PRKAR1A	SRF	TP63
AFF3	CCDC170	CSF1	EZR	IL2RB	MLLT10	NTRK3	PRKD1	SRGAP3	ТРМЗ
AFF4	CCDC6	CTLA4	FAM131B	IRF4	MLLT11	NUP214	PRKD2	SS18	TPM4
AHRR	CCNB3	CTNNB1	FEV	ІТК	MLLT3	NUP98	PRKD3	SSX1	TPR
ΑΚΑΡ9	CCND1	CTNNBL1	FGFR1	JAK2	MN1	NUTM1	PTPRK	SSX2	TRIM24
АКТЗ	CCND2	DDIT3	FGFR2	JAZF1	MPRIP	NUTM2A	RAD51B	SSX4B	UBTF
ALK	CCND3	DDX3X	FGFR3	KAT6A	MRTFB	NUTM2B	RAF1	STAT6	USP6
AR	CD274	DDX5	FGFR4	KDM5A	MSH2	OMD	RANBP2	STIL	VTI1A
ARv7*	CD74	DHH	FLI1	KIAA1549	MYB	PAN3	RARA	STRN	WDFY2
ARv9*	CDH11	DNAJB1	FLT3	KIF5B	MYBL1	PATZ1	RASGEF1A	SUZ12	WIF1
ARID1A	CDK4	DUX4	FOXO1	КІТ	MYC	PAX3	RET	SYK	WT1
ASPSCR1	CDK6	EGFR	FOXP1	KLK2	MYH9	PAX7	RHEBL1	TACC3	WWTR1
ATF1	CDKN2D	EGFRvIII*	FRK	KMT2A	MYLK	PAX8	ROS1	TAF15	YAP1
ATIC	CHCHD7	ELK4	FUS	KNL1	NAB2	PBX1	RPS6KC1	TAL1	YWHAE
AXL	CIC	ELL	GLI1	KRAS	NCOA1	PCM1	RSPO3	TBL1XR1	ZNF444
BCOR	CIITA	EML4	GLIS1	LIFR	NCOA2	PDGFB	RUNX1	TCF12	
BCR	CLTC	EPC1	GLIS2	LMNA	NCOA4	PDGFRA	RUNX1T1	TCF3	
BRAF	CNBP	EPS15	GLIS3	LPP	NDRG1	PDGFRB	SDC4	TCF7L2	
BRCA1	COA5	ERBB2	GNAS	MAML1	NFATC2	PHF1	SEC31A	TEAD1	
BRCA2	COL1A1	ERG	GOPC	MAML2	NFIB	PIK3CA	SEPTIN6	TEAD2	
BRD4	COL1A2	ESR1	HAS2	MAST1	NOTCH1	PLAG1	SEPTIN9	TEAD3	

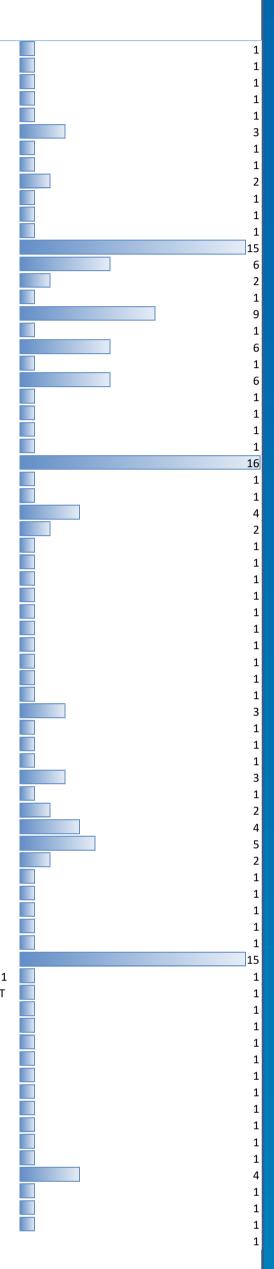
1. The fusion panel targets fusions involving 250 clinically relevant fusion genes relevant to most frequent cancers, including breast, colorectal, lung, lymphoma, pancreatic, prostate, salivary gland, sarcomas, and thyroid cancers. Fusion genes are included on NCCN and WHO guidelines, published clinical studies, and the 120 most frequent curated fusions in solid tumors from COSMIC (v91) providing >90% prevalence per fusion pair.


Expressed RNA Fusions Capture-based Targeted RNA-seq Assay Workflow

3x tiling capture probes I. Nucleic Acids Extraction **FFPE biopsies** Gene Fusion Module **Chimeric RNAs targeted Capture** II. Fusion–Targeted Libraries Construction 1. Chimeric RNA Capture .. cDNA Library Total Nucleic Acids (TNA) preparation Novel partners 5' RNA gene A paired-end Sequencing (NextSeq/NovaSeq) **III. Custom Fusion Calling Bioinformatics Pipeline** IV. Fusion Interpretation and (QC, 3 Fusion callers + Machine Learning algorithm= Reporting High confidence (report) /Low confidence fusions


2: A new Solid Tumor Gene Fusion RNA-Seq assay workflow. Starting with FFPE total nucleic acid extraction, the assay detects only expressed fusions through RNA fusion sequence- targeted, hybridization capture-based, stranded pair-ended RNAsequencing on Novaseq instruments. Key step resides on custom based design of capture baits mapping to the chimeric RNA sequence` as deduced from chromosomal breakpoints in annotated private and public databases.

(confirm by RT-PCR+ Sanger)


Gene fusions testing in clinical practice was mainly ordered for select fusion genes Therapeutically actionable fusions often co-occur with other driver mutations

3. Physicians ordered fusions tests for 5341 cases. (A) All tested cases. (B) Distribution of cases tested for disease specific fusions. (C) Fusions from 163 positive reported cases. (D) Prevalence of select common fusions reported across all cancers tested.

5. Co-existence of oncogenic fusions and Immunotherapy biomarker PD-L1.

PD-L1 (IHC) Test Result STOM-NTRK2 EXPRESSED EXPRESSED T Exon 14 Deletic EXPRESSED KIF5B-RET SLC3A2-NRG1 **EXPRESSED** NTRK2-CDC14E EXPRESSED EXPRESSED EML4-ALK SDC4-ROS1 IGH EXPRESSION **TPM3-NTRK1** IGH EXPRESSIO FGFR2-AHCYL IGH EXPRESSIO **KIF5B-RET** HIGH EXPRESSION MET Exon 14 Skippin HIGH EXPRESSION CCDC6-RET **HIGH EXPRESSION** HIGH EXPRESSION EML4-NTRK3 HIGH EXPRESSION EML4-NTRK3 HIGH EXPRESSION MET Exon 14 Deletic EML4-NTRK3 HIGH EXPRESSION FGFR2-CTNNA3 HIGH EXPRESSION HIGH EXPRESSION NTRK2-CNTLN HIGH EXPRESSION MET Exon 14 Skipping **HIGH EXPRESSION** MET Exon 14 Skippin HIGH EXPRESSION EML4-ALK HIGH EXPRESSION APP-NRG1 ADAM9-FGFR1 HIGH EXPRESSION HIGH EXPRESSION FGFR2-NRBF2 LMNA-NTRK1 HIGH EXPRESSION HIGH EXPRESSION EML4-NTRK3 27 MET Exon 14 Skipping HIGH EXPRESSION

4. PD-L1 expression in Fusion Positive samples

NTRK fusions STOM-NTRK2 TPM3-NTRK1 TPM3-NTRK1 TPM3-NTRK1	Co-occurring mutations TP53 RNF43 TP53 FBXW7
STOM-NTRK2 TPM3-NTRK1 TPM3-NTRK1	TP53 RNF43 TP53 FBXW7
TPM3-NTRK1 TPM3-NTRK1	RNF43 TP53 FBXW7
TPM3-NTRK1	TP53 FBXW7
	FBXW7
TPM3-NTRK1	
EML4-NTRK3	RNF43
EML4-NTRK3	ARID1A
EML4-NTRK3	TERT
NTRK2-CNTLN	TP53
NTRK2-CNTLN	NFE2L2
NTRK2-CNTLN	PTEN
LMNA-NTRK1	KMT2D
LMNA-NTRK1	TP53
LMNA-NTRK1	TP53
LMNA-NTRK1	RNF43
LMNA-NTRK1	FBXW7
LMNA-NTRK1	POLE
LMNA-NTRK1	ARID1A
LMNA-NTRK1	ARID1A
NTRK2-CDC14B	FBXW7
NTRK2-CDC14B	TP53
NTRK2-CDC14B	TP53

ALK fusions	Co-occurring	
	mutations	
EML4-ALK	TP53	
EML4-ALK	KMT2D	
EML4-ALK	FGFR2	
RET fusions	Co-occurring	
NET TUSIONS	mutations	
KIF5B-RET	ARID1A	
CCDC6-RET	TP53	
CCDC6-RET	TERT	
KIF5B-RET	TP53	
KIF2B-KEI		
	Co-occurring	
ROS1 fusion		
	Co-occurring	
ROS1 fusion ABHD12-	Co-occurring mutations	
ROS1 fusion ABHD12- ROS1 ABHD12-	Co-occurring mutations SMARCA4	
ROS1 fusion ABHD12- ROS1 ABHD12- ROS1 ABHD12-	Co-occurring mutations SMARCA4 TP53	

NGR1 fusions	Co-occurring mutations
SLC3A2-NRG1	TP53
VDAC1-NRG1	TP53
VDAC1-NRG1	TP53
VDAC1-NRG1	FBXW7
APP-NRG1	ARID1A
FGFR fusions	co-occuring mutations
FGFR2-AHCYL1	BAP1
EGER3-TACC3	TD52

	mutations
GFR2-AHCYL1	BAP1
GFR3-TACC3	TP53
GFR2-CTNNA3	BAP1
DAM9-FGFR1	KRAS
GFR2-NRBF2	BAP1
GFR2-EEA1	PBRM1
GFR2-EEA1	BAP1

6. Co-occurring driving mutations found on cases with select therapeutically actionable fusions

