¹ Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, University of Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada ²Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Princess Margaret Cancer Centre, Princess Margaret Cancer Centre, Princess Margaret Cancer Centre, Pri Toronto, ON, Canada ⁴INIVATA, Babraham Research Park, Cambridge, United Kingdom ⁵INIVATA, Research Triangle Park, NC, USA. ⁶Division of General Surgery, University of Toronto, ON Canada

BACKGROUND

Locally advanced melanoma has a variable prognosis ¹.

UHN Margaret Cancer Centre

- Adjuvant immuno- (IO) and targeted therapy (TT) are approved for stage III-IV resected disease ²⁻⁵. However, a significant proportion of patients (pts) are cured by local treatment alone or relapse despite adjuvant therapy.
- Liquid biopsy has been used to predict benefit from systemic therapy and identify pts at higher risk of disease relapse and death ⁶.
- Personalized ctDNA assays are a highly sensitive approach that may enhance upfront risk stratification and early detection of relapse ⁶.

METHODS

- Serial ctDNA Monitoring as a predictive Biomarker in advanced neoplAsms (SAMBA) is a Princess Margaret initiative (NCT03702309) evaluating ctDNA kinetics in longitudinal samples collected from high-risk melanoma pts.
- Personalized amplicon based NGS assays by Inivata (RaDaR®) were used to detect somatic variants in ctDNA identified through whole-exome sequencing of matched tumor tissue ⁷⁻⁸.
- Progression free survival (PFS) and overall survival (OS) from the time of surgery were estimated with the Kaplan Meier analysis and compared with the log-rank test.

Figure 1: Study schema. Samples are collected from pts with stage IIB-IV resected melanoma, who post-surgery, undergo regular surveillance follow-up or adjuvant systemic treatment with either IO or TT. Plasma is collected pre-op (if feasible), post-op (after surgery), and every 3-6 months (m) around the time of radiological restaging, until radiological progressive disease (rPD).

CONQUER CANCER[®]

THE ASCO FOUNDATION

Total N of patients	
Age (median)	66
Follow-up (median)	27 ma
Gender	
Female	1
Male	3
Stage	
	3
IV	1
BRAF	
Mutated	2
Wild Type	3
Adjuvant Systemic	
Therapy	
None	1
Immunotherapy	3
Targeted therapy	
Unknown (clinical trial)	
Adjuvant Radiation	
Yes	1
No	4
Progressive Disease	

Table 1: Clinical characteristics of 53 pts
 with stage IIB-IV melanoma, treated with surgery followed by surveillance follow up or adjuvant systemic therapy.

No

12 op). Post-op collection within 3 m was available for 51/53 pts (96%). We observed a significant prolongation of median OS in patients with ctDNA - in this population. No significant difference was observed in term the overall population based on post-op ctDNA detectability. However, in patients not receiving adjuvant treatment ctDNA+ at post-op col associated with shorter PFS. No differences were observed in patients with ctDNA+ vs ctDNA- in samples collected before surgery (data not shown).

Abstract #9579: Leveraging personalized circulating tumor DNA (ctDNA) for detection and monitoring of molecular residual disease in high-risk melanoma UNIVERSITY OF TORONTO

Sofia Genta¹, Daniel V Araujo¹, Sareh Keshavarzi², Thiago P Muniz¹, Zaid Saeed Kamil³, Karen Howarth⁴, Samantha Terrell⁵, Andrea Covelli⁶, Samuel Saibil¹, Pavlina Spiliopoulou¹, Olga Vornicova¹, Alexandra Easson⁶, Marcus Butler¹, Lillian L Siu¹, Scott Bratman⁷, Anna Spreafico¹

RESULTS

42	Months
N=38	8)
-	

=0.7	
42	Month
ns of	PFS fo
lecti	on wa
own).

Figure 4: Examples of ctDNA changes in two pts with stage III disease receiving adjuvant IO and their correlation with clinical outcomes. Pt 58 had pre-op and post-op ctDNA+, cleared after the start of IO. At 8m the pt had a rise in ctDNA associated with rPD with negative biopsy. The pt continued IO with decrease of ctDNA and of the disease on radiological imaging.

Pt 70 had post-op ctDNA– which become positive at 6 m predicting a local recurrence. The patient had surgical resection of the recurrent disease. Despite this, developed further PD associated with further rise of ctDNA.

	Pre-op		Post-op		Longitudinal		at PD
	PD	Non-PD	PD	Non-PD	PD	Non-PD	
ctDNA+	3 (60%)	3 (43%)	3 (19%)	2 (6%)	11 (41%)	2 (1%)	7 (87%)
ctDNA-	2 (40%)	4 (57%)	13 (81%)	33 (94%)	16 (59%)	132 (99%)	1 (13%)
Total	5	7	16	35	27	134	8
							_

Table 1: ctDNA+ and ctDNA- samples collected before surgery (pre-op), after surgery (post-op) and at subsequent time points from all the participants,

CONCLUSIONS

- Personalized ctDNA analysis with RaDaR® may improve risk of death stratification and selection of pts who could benefit
- Detection of ctDNA may precede rPD.
- Follow-up will continue in pts with rising ctDNA who have not
- Pts accrual and sample collection are ongoing.

AKNOWLEDGMENT

This study is performed under the auspice of the LIBERATE study, supported by the BMO Chair in Precision Cancer Genomics. The following grants and awards have also contributed to supporting this study: Douglas Wright Melanoma Award, Division of Medical Oncology and Hematology Young Investigator Award, Catalyst and Invest in Research Princess Margaret grants.

We thank all patients and their families who participated in the study.

REFERENCES

Gershenwald, J.E., et al.. CA Cancer J Clin, 2017. 67(6): p. 472-492. PMID: 29028110 Maio, M., et al. Lancet Oncol, 2018. 19(4): p. 510-520. PMID: 29477665 Long, G.V., et al., N Engl J Med, 2017. 377(19): p. 1813-1823. PMID: 28891408 Eggermont, A.M.M., et al.. N Engl J Med, 2018. 378(19): p. 1789-1801. PMID: 29658430 Weber, J., et al.N Engl J Med, 2017. 377(19): p. 1824-1835. PMID: 28891423 CONQUER Gandini, S, et al. Crit Rev Oncol Hematol 2021, 157:103197. PMID: 33276181 CANCER® Flach, S, et al. BJC, 2022, 126, p 1186–1195. PMID: 35132238 THE ASCO FOUNDATION Gale, D, et al. Ann Oncol, 2022 May;33(5):500-510. PMID: 35306155 as **1ERIT AWARD** Contact: Sofia Genta, MD (sofia.genta@uhn.ca) CIPIENT